Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging.
نویسندگان
چکیده
This paper presents a method for measuring the optical absorption cross-sections (σ(a)) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μ(a)) of the nanostructure. For each type of nanostructure, we firstly obtained μ(a) from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μ(a)) derived from a set of methylene blue solutions with different concentrations. We then calculated σ(a) by dividing the μ(a) by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σ(e), sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σ(a) and σ(e), we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials.
منابع مشابه
Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent.
Poly(ethylene glycol)-coated Au nanocages have been evaluated as a potential near-infrared (NIR) contrast agent for photoacoustic tomography (PAT). Previously, Au nanoshells were found to be an effective NIR contrast agent for PAT; however, Au nanocages with their more compact sizes (<50 nm compared to >100 nm for Au nanoshells) and larger optical absorption cross sections should be better suit...
متن کاملTheoretical Comparison of Optical Properties of Near-Infrared Colloidal Plasmonic Nanoparticles
We study optical properties of near-infrared absorbing colloidal plasmonic nanostructures that are of interest for biomedical theranostic applications: SiO2@Au core-shell particles, Au nanocages and Au nanorods. Full-wave field analysis is used to compare the absorption spectra and field enhancement of these structures as a function of their dimensions and orientation with respect to the incide...
متن کاملRadioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution
With Au nanocages as an example, we recently demonstrated that radioactive (198)Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from (198)Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radi...
متن کاملTargeted Aucore-Agshell nanorods as a dual-functional contrast agent for photoacoustic imaging and photothermal therapy
Optimizing contrast enhancement is essential for producing specific signals in biomedical imaging and therapy. The potential of using Aucore-Agshell nanorods (Au@Ag NRs) as a dual-functional theranostic contrast agent is demonstrated for effective cancer imaging and treatments. Due to its strong NIR absorption and high efficiency of photothermal conversion, effects of both photoacoustic tomogra...
متن کاملInterstitial diffuse radiance spectroscopy of gold nanocages and nanorods in bulk muscle tissues
Radiance spectroscopy was applied to the interstitial detection of localized inclusions containing Au nanocages or nanorods with various concentrations embedded in porcine muscle phantoms. The radiance was quantified using a perturbation approach, which enabled the separation of contributions from the porcine phantom and the localized inclusion, with the inclusion serving as a perturbation prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. C, Nanomaterials and interfaces
دوره 113 21 شماره
صفحات -
تاریخ انتشار 2009